My Electric Longboard Build – BOM

While I was creating my first build and began to put my first working prototype together, I figured I would document my parts, their prices, and explain why I chose them. I’ve split up the BOM into two parts, the electric longboard components and the board components which are usable on their own for a normal longboard. I decided to go with a single motor design for my first build (it seems fairly trivial to add a second motor in the future) and so far it’s been handling pretty well on hills. The only downside is that sometimes if I lean all the way to the left, the right back wheel comes off the ground slightly and I lose the driving traction. For more info about the trade-offs, check out my previous post.

The way a typical electric longboard works is, you (the rider) use the transmitter to speed up or slow down. The transmitter interacts with a receiver that is hooked up to the ESC (Electronic Speed Controller) which interprets the signal and turns it into a motor signal. The ESC needs to be hooked up to the battery for power since the ESC is what drives the motor. The motor then turns a gear which is hooked up to a belt that will then turn another gear that is attached to your wheel. This is how your longboard will gain movement.

ElectricLongboardDiagram

 

Electric Longboard Components
$70 – 5065 170kV sensored brushless DIYElectricSkateboard motor with 8mm wide and 35mm long shaft
5065 designates the size of the motor and is a common size for electric longboards although they typically have a smaller shaft. 170kV designates the torque the motor can produce (the smaller the number the higher the torque, but the lesser it’s top speed).
motor
$25 – Wiiceiver – (Not needed if you are using the VESC)
 A way to control the input to the ESC coming from the wii nunchuck
wiiceiver
 Has a better feel and is less bulky than a traditional RC controller.wii-controller
$110 + $20 – VESC
I found someone with experience making them and bought one but it needed to be custome made and shipped to me. The extra $20 is because I had to solder on wires and 2200uf 63V capacitor myself.
PCB_Front-1024x683
I used this in the interim while I was waiting from my VESC to be made and shipped to me. With some configuration it turned out to work decently well. I was able to ride it on flat or a slight incline, but with less power and it would cut off if the motor started to draw too much power. 
mambamaxpro
They were a lot cheaper than the 6S1P 5000mah batteries and have decent power and capacity.
5S1PBatteries
DIYElectricSkateboard sells an aluminum part for the motor pulley and I figured that since it’s the part coming off the motor shaft and is only connected by two set screws, it makes sense to get this part made of aluminum to handle the stress.
FREE – 15mm width 36 tooth wheel pulley (3D-printed it myself)
Originally based off a 9mm pulley model, I had to add bigger holes for stronger screws and a couple other changes. I will link to the design I put together for this part once I’ve tested it and made it fit reliably.
OrangatangPulley
$10 – 8mm width 280mm length HTD5 belt
15mm width is better than the 8mm width belt due to it’s wider area and less likelihood of snapping, but an 8mm belt allows for some leeway in alignment.
$5 – 5x M5 x 70mm bolts + washers + nyloc nuts for the wheel mount
These come in a lot more usually than only 5, but it doesn’t hurt to have more just in case.
This works out well and is made of aluminum. This can be replaced with a cheaper non-adjustable mount, but I didn’t like the idea of welding on a mount to my longboard trucks and had not ability to do the welding.
MotorMount
Subtotal: $400

Board Components
I chose these due to the holes in the hub of the wheels that could hold screws in order to mount a gear through.
orangatang_kegel
Due to my choice of wheels, these had to be altered in order to fit them (I used a file to make a bit of room for the screws that hold the gear onto the wheel) If I were to do this again, I might try the Paris trucks since they are more symmetrical.
caliber2fifty
These are some of the better bearings and ride really smoothly.
bonesredsbearings
$100 – Board of your choice
Subtotal: $224

Total $510 with new wheels and trucks on an old longboard
Total $624 from scratch

Making an Electric Longboard

boosted-board image

Electric longboards have been taking off lately and gaining publicity through Kickstarter campaigns and tech sites like TechCrunch, Engadget, and Tested. The most popular commercial products come from Boosted, evolve, and Marbel. However the price for a consumer board is upwards of $1000!

Because of this price, there has also been a huge movement in DIY electric longboards and the most common designs take a regular longboard and RC Car electronics to create a custom electric longboard with swappable components. This was the route that I was interested in going since I already had a regular longboard and couldn’t justify spending over $1000 on a longboard that I could build myself for less than $600.

The first step in building your own electric longboard is of course research. I found a lot of great material on forums, instructables, custom sites and blogs, but the best resource was a forum dedicated to electric vehicles which had a specific section for electric skateboards and scooters known as Endless-Sphere. From here I was able to gain insight and chat with a bunch of similarly minded DIYers who had built or were building their own electric longboards. The most common designs were a single motor setup, dual rear setup, and dual diagonal setup.

What are the differences?

Single Motor

The cheapest option to build, it’s main use is for traveling on flat ground and it is lighter due to the one motor setup. It doesn’t have as great hill riding capabilities and could burn out with too many or too long of an incline ride.

Dual Rear

This costs more than the single motor setup, and creates a size restraint on the motors since you can’t use two 63mm motors with a traditional truck. However, it allows you to ride faster, tackle more hills with less stress on the motors, and have a back-up motor in case one fails.

Dual Diagonal

Some people prefer this build over the Dual Rear because it spreads out the motorized wheels in order to give better coverage over uneven ground. The cost and performance should be relatively the same as a dual rear, but you are able to use two bigger motors for this build since you don’t have the size constraint of mounting two motors on one truck.

What do you need to build your own electric longboard?

Longboard Components

  • $20 and up – Longboard deck (there are plenty of options here, whatever floats your boat)
  • $60 – Longboard wheels (preferrably with some sort of hub that you can interface a motor pulley with, common choices are ABEC 11 Flywheels and Orangatang Kegels)
  • $50 -Longboard trucks (your choice, but I prefer the Caliber trucks since they come with decent bushings and are great stable)

Mechanical Components

  • $50 to 100 – Motor mount (Can be bought for a couple types of trucks, or made yourself and welded onto your mount or clamped)
  • $10 – Motor pulley (Can be bought for 9mm or 15mm wide belt with varying teeth. Recommended teeth are 12T, 14T, and 15T)
  • $10 – Wheel pulley (This will depend on your wheel. You can make one yourself using a CNC machine and aluminum, or you can buy one for certain types of wheels. Recommended 36T)
  • $10 – HTD5 belt (after you figure out the spacing and mounting, you’ll want to measure and buy this to fit perfectly)

Electrical Components

  • $70 – Motors (The general rule of thumb is to use a Brushless DC Outrunner motor with over 1000W and below 300 KV)
  • $110 – ESC (Electronic speed controller which determines how fast the motor should spin. Check out the VESC that is being developed specifically for electric longboards)
  • $60 – Batteries (LiPo batteries are the most common, and these are commonly used)
  • $35 – Controller (Some people used a generic RC car controller, but I went the Wiiceiver route and a Wireless Wii Nunchuck)

Total: $565 with quality parts!